Getting closer to multi-chain smart contracts

Multi-chain Taprootized Atomic Swap protocol

Distributed Lab, Jan 2024
Version 1.0

Abstract. We proposed Taprootized Atomic Swaps to add untraceability to atomic swaps. Our
approach was still susceptible to brute force search of swapped amounts. Trying to solve that problem,
we developed a new protocol that splits the receiving amount in an untraceable way. But the ultimate
goal is to develop technology for multi-chain swaps (i.c., smart contracts that operate on multiple
chains). This paper describes how a swap between a smart-contract-enabled chain and multiple

Taproot-enabled chains can work.

Intro

Taprootized Atomic Swaps (TAS) allow hiding the swap transaction under the regular payment on the
Bitcoin side. But simultaneously, the mentioned transaction has the “sibling” on the counterparty
network. The relation between these transactions is the ratio of assets that were swapped. So it means
that the external auditor can see how many coins/tokens were withdrawn from the appropriate
contract and try to find the transaction in the Bitcoin networks that pays BT'C (or assets issued in the

Bitcoin system) in the corresponding ratio (based on market prices).

Chain 4
Payment for 1BTC Payment for 1BTC
20 ETH were deposited 20 ETH were withdrawn
B
Chain B

If the payment wasn’t instant — the auditor can assume the time range in which the swap was
performed (locktime in the contract can provide more info about it) and select all suitable transactions.
Potentially, its number can be big, but anyway, it simplifies building the graph of transactions for

auditors with specialized equipment.

This paper will provide a concept of breaking the amount of BT'C that must be transferred into several
transactions that will be processed via atomic way (not simultaneously, but within the timelock
interval). It increases the difficulty of matching swap transactions because, in this case, the external
auditor needs to solve a sudoku puzzle with a much larger number of combinations than direct swap

transactions.

This solution can be applied to the swap between a smart contract platform and several chains that
support Taproot technology. This way, the untraceability of swaps will be significantly increased, but

the user experience will be more complicated.

Splitting the amount between several transactions
The extension is the following — instead of forming a single PKj by Bob*, he can generate the array of
[PK},] according to the number of transactions Alice wants to spend. So, the transformed protocol
works the following way:
1. Alice has 1 BTC but on separate outputs (e.g., 0.5, 0.32, and 0.18 BTC). The number of keys
needed by Bob in this case equals # = 3 (some of the outputs can be added into one

transaction Alice wants).

2. Alice generates random k, and K = k*G

3. Alice calculates the array of PKj,, ;= K + PKy, ;, where i € [1, n] and b = hash(k)

4. Alice sends array of transactions each of which pays to “(PK,, ;) or (PK ,+ Locktime,)”

5. Alicesends K, [PK},,], hand proof (hash(k) == h &€ k*G == K)

6. Bob verifies proofs and locks his 20 ETH to the smart contract with conditions “(publishing
k) or (PK, + Locktime2)”

7. Alice withdraws 20 ETH by publishing &

8. Bob takes k and generates the list of signatures for [PK,, ;] (using their sky ;).

So, as you can see, we use the same K for all Bob’s public keys. As a result, after publishing the & value,

Bob can unlock all transactions by calculating appropriate private keys for [PK,, ,/.

This approach increases the cost of paying fees several times (depending on the # parameter). Still, it
significantly affects the complexity of matching amounts over chains (the bigger combinations must be

processed and accounted for in the graph).

g H
FH R e e T S
2 A
m ¢
i
W
M-
L
] g
—_— £ < % - -
mm o &
3.3 Pal 131
R Ty %
Q* |U i M w
A
z
b-*3
n
&

1
gk
siglskEska)
L]

-
Locktime + siglskd)

Each can be comprcssepl teo
P2TR address

Multi-chain TAS protocol

The same approach can be applied to several networks that support Taproot technology. Imagine that
Alice and Bob agreed to change 20 ETH to 0.8 BTC and 3 LTC. With Taptootized Atomic Swaps,

they can do that via atomic way:

1.

Alice has 0.8 BTC and 3 LT'C. Bob needs to generate two keypairs (2 = 2), the first for the
payment on Bitcoin networks and the second for the payment on Litecoin.
Alice generates random &, and K = k*G
Alice calculates PKy,, gre=K + PKy gre, and PKy, 17c=K + PKy 5
Alice broadcasts transactions to Bitcoin and Litecoin networks (locktimes could be different)
a. “(PKg, grc) or (PK, gr¢+ Locktime)”
b. “(PKg, 1rd) or (PK, prc + Locktime)”
Alice sends K, PK;,, gre, PKy,. rre, hand proof (hash(k) == b €& k*G == K) to Bob
Bob verifies proofs and locks his 20 ETH to the smart contract with conditions “(publishing
k) or (PK; + Locktime2)”
Alice withdraws 20 ETH by publishing &
Bob takes & and generates the list of signatures for PKy,, prcand PKy, r¢ (using their sky gy

and sky ;7c).

* The original protocol

A e

N o

Alice generates random k, and K = k*G

Alice calculates PK;,, = K + PKy and b = bash(k)

Alice sends tx that pays 1 BTC to “(PKy,) or (PK , + Locktimel)”

Alice sends K, PKy,, b and proof (hash(k) == b && k*G == K)

Bob verifies proofs and locks his 20 ETH to the smart contract with conditions “(publishing k) or
(PK;; + Locktime2)”

Alice withdraws 20 ETH by publishing &

Bob takes & and generates the signature for PK, (using their skg).

Ethereum
network
I
1
1
|
:
1
1
1
1
1
1
1
1
1
1
1
]
]
]
1
1
1
1
1
1
]
1
1
1
1
1
1
]
1
1
1
1
1
1
]
]
1
1
1
1
|
]
1
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
]
1
1
1
1
]
1
1

Toke k

skEskbte = k + skBbte
skEsklte = k + skBlte

1
i
1
]
]

I
siglskEskbte)
'
sng(skﬁskl‘tc)
1
1

—~
1]
W

py
(]
5+
v
2
£
8
J

I
)
ra
W
+
EY

skBbte, PkBbte
skBlte, PkBlte

PKEsklte = K + PkBlte

> b = kHash(d

PKEskbte = K + PkBbtc

g 0}
2 e
- 3 - 3 =
g 3| 2 2 3
2 & = P %
. - w W "] ~
|||||||||||||| X [1Xd § T (el e e e e e e e e e ——
.T.mo,f .T_L_“_ + v
[
Lo %8 .
v ﬁ m
Fd 8
N J

Summary

The following list of properties is achieved with multichain TAS protocol:

1.

Links

Auditors can’t match swap transactions based on committed hash values and appropriate
secrets like in classic atomic swaps.

Auditors can’t assume if the particular Bitcoin transaction participates in the swap — it’s
masked as a regular payment transaction. The locktime condition is hidden in the Taproot
and revealed only if the swap wasn’t performed.

Auditors can’t match amounts in chains directly if the split mechanism is used. However,
sudoku analysis can be applied to make some assumptions.

The protocol is trustless. The protocol guarantees that only the publishing of secret k can
unlock money from the contract. At the same time, publishing & leads to the ability to form
the correct key and produce the signature for BTC unlock.

No mediator is required. Users can exchange the needed information for the swap directly,
using existing protocols for secure message transfer.

The protocol works not only for the native currencies but also supports tokenized assets,

non-fungible tokens, etc. It can be a basic protocol for bridges, stablecoins, marketplaces, etc.

[1] https://distributedlab.com/whitepaper/Taprootized-Atomic-Swaps.pdf

https://distributedlab.com/whitepaper/Taprootized-Atomic-Swaps.pdf

